in the melt or on solid supports (cellulose or chitosan, mol. weight 30000), the products being separated by chromatography on SiO<sub>2</sub>. Transformation a into compound 2 (27-41%) may be considered to be an example of the Auwers rearrangement,3 and rearrangement b vielding product 4 (2-14%) can formally be explained by the 1,3-migration of the CCl<sub>3</sub> group via intermediate 3 followed by hydrolysis and lactonization. Rearrangement c to give product 6 (2-13%) probably occurs via the intermediate unstable quinonemethide 5, which then undergoes double radical recombination. The contribution of pathway a to the processes observed virtually does not depend on the reaction conditions. In the melt, pathway c markedly dominates over pathway b; conversely, on solid supports (cellulose is somewhat more active than chitosan), the latter competitively suppresses rearrangement c almost completely. The structures of the new products were determined by the data of elemental

analysis, <sup>1</sup>HNMR and IR spectroscopy, and mass spectrometry. In the case of compound **4**, MS-FAB and X-ray diffraction were also used.

This work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 95-03-09784a) and the International Science Foundation (Grant No. MHW 300).

#### References

- 1. R. F. C. Brown, Pyrolytic Methods in Organic Chemistry: Application of Flow and Flask Vacuum Pyrolytic Techniques, Academic Press, New York, 1980, 347 pp.
- V. A. Nikanorov, S.V. Sergeev, V. I. Rozenberg, and O. A. Reutov, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 925 [Bull. Akad. Sci. USSR, Div. Chem. Sci., 1988, 37, 804 (Engl. Transl.)].
- 3. K. Auwers, Ber., 1896, 29, 1095.

Received January 16, 1996

## Ethylenebis(azidomalonates)

R. G. Kostyanovsky\* and O. N. Krutius

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: +7 (095) 938 2156

Tetraethyl ethylenebis(azidomalonate) (1) was synthesized for the first time by azide transfer from tosyl azide<sup>1</sup> onto ethylenebis(malonate) dianion.<sup>2</sup> Transformations of compound 1 afforded ethylenebisazidomalonic acid (3), its salt (2), and its ester 4 (Scheme 1), which are of interest as synthons and photoactive reagents.

Bisazide 1, yield 39 %, white crystals, m.p. 44-46 °C. Found (%): N, 19.67.  $C_{16}H_{24}N_6O_8$ . Calculated (%): N, 19.63. IR (in thin film),  $v/cm^{-1}$ : 2130 (N<sub>3</sub>); 1755 (CO) (cf. monoazidomalonates<sup>1</sup>). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.34 (t, 12 H, Me,  $^3J = 7.0$  Hz); 1.90 (s, 4 H, 2 CH<sub>2</sub>); 4.31 (q, 8 H, 4 CH<sub>2</sub>O). <sup>13</sup>C NMR (CDCl<sub>3</sub>),  $\delta$ : 13.7 (q, Me,  $^1J = 128.1$  Hz); 27.9 (t, (CH<sub>2</sub>)<sub>2</sub>,  $^1J = 135.2$  Hz); 70.6 (s, CN<sub>3</sub>); 62.6 (t, CH<sub>2</sub>O,  $^1J = 144.1$  Hz); 166.5 (s, CO). Salt 2, yield 94 %, white crystals, m.p. >270 °C (dec.). <sup>1</sup>H NMR (D<sub>2</sub>O),  $\delta$ : 1.73 (s, CH<sub>2</sub>). Acid 3, yield 95 %, white crystals, m.p. >169 °C (dec.). <sup>1</sup>H NMR (acetone-d<sub>6</sub>),  $\delta$ : 2.01 (s, CH<sub>2</sub>). <sup>13</sup>C NMR (CD<sub>3</sub>OD),  $\delta$ : 28.9 (t, CH<sub>2</sub>,  $^1J = 135.0$  Hz); 74.0 (s, CN<sub>3</sub>); 172.5 (s, CO). Methyl ester 4, yield 97.7 %, white crystals, m.p. 85–87 °C. 1R (CCl<sub>4</sub>),  $v/cm^{-1}$ : 2110 (N<sub>3</sub>); 1735–1700 (CO).

## Scheme 1

Reagents and conditions: i. NaH in anhydrous dioxane, 2 h, 40 °C, then TsN<sub>3</sub>, boiling for 15 h. ii. 4 equiv. of KOH in MeOH, 12 h, 20 °C. iii. conc. HCl in Et<sub>2</sub>O, 1 h, 20 °C. iv. CH<sub>2</sub>N<sub>2</sub> in Et<sub>2</sub>O/MeOH.

<sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 1.92 (s, 4 H, 2 CH<sub>2</sub>); 3.82 (s, 12 H, 4 MeO). <sup>13</sup>C NMR (CDCl<sub>3</sub>), δ: 28.3 (t, CH<sub>2</sub>,  $^{\dagger}J = 133.7$  Hz); 53.5 (q, MeO,  $^{\dagger}J = 148.2$  Hz); 71.0 (s, CN<sub>3</sub>); 167.16 (s, CO).

The work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 94-03-08730).

### References

- S. J. Weininger, S. Kohen, S. Mataka, G. Koga, and J.-P. Anselme, J. Org. Chem., 1974, 39, 1591.
- R. G. Kostyanovsky, O. N. Krutius, Yu. I. El'natanov, Izv. Akad. Nauk, Ser. Khim., 1994, 2185 [Russ. Chem. Bull., 1994, 43, 2065 (Engl. Transl.)].

Received January 16, 1996

# 3,7-Diaza-2,6-dioxobicyclo[3.3.1]nonane-1,5-dicarboxylates: complete autoassembly and NMR studies

R. G. Kostyanovsky, \* Yu. I. El'natanov, I. I. Chervin, and V. N. Voznesensky

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: +7 (095) 938 2156

To develop further the principle of complete autoassembly of cage structures, we have studied the synthesis of the bicyclic dilactam 1a (cf. the known data²) by aminomethylation of methylenebismalonate. The intermediate formation of the corresponding diamino tetraester was confirmed by the preparation of the sterically hindered analog 2 from ethylenebismalonate³ under the same conditions (Scheme 1).

Diester 1a readily undergoes transesterification to give its analog 1b (MeOH/MeONa, 0.5 h at 20 °C, yield 84 %, m.p. 205—207 °C). Exhaustive alkaline hydrolysis of diester 1a gave derivatives 1c,d, and partial hydrolysis of 1a,b yielded compounds 3a,b and 4a,b.

The compositions and structures of compounds 1-4 were confirmed by the data of elemental analysis and <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy.

R = Me (1b), K (1c), H (1d) R = Et, R' = K (3a), H (3b) R = Me, R' = Na (4a), H (4b)

Scheme 1  $(CH_2)_n[CH(CO_2Et)_2]_2 \xrightarrow{i} EtO_2C \xrightarrow{8} \xrightarrow{9} \xrightarrow{5} CO_2Et$   $ii \quad n = 2$   $[CH_2C(CO_2Et)_2]_2$   $CH_2NHBu^t$ 

Reagents and conditions: i. 1 equiv. of 1,3,5-trimethylhexahydro-1,3,5-triazine in the presence of CF<sub>3</sub>CO<sub>2</sub>H, 20 h at 100 °C. ii. 1 equiv. of 1,3,5-tris(tert-butyl)hexahydro-1,3,5-triazine under the conditions described in i.

1a. Yield 75 %. M.p. 103-104 °C (cf. Ref. 2). 2. Yield 75 %. M.p. 80 °C. <sup>1</sup>H NMR (CD<sub>3</sub>OD), δ: 1.06 (s, 18 H, 2 Bu<sup>1</sup>); 1.25 (t, 12 H, 4 Me,  $^3J = 7.0$  Hz); 1.83 (s, 4 H, 2 CH<sub>2</sub>); 3.0 (s, 4 H, 2 CH<sub>2</sub>N); 4.17 (q, 8 H, 4 CH<sub>2</sub>O,  $^3J = 7.0$  Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>), δ: 13.96 (qt, CH<sub>3</sub>CH<sub>2</sub>O,  $^1J = 127.2$  Hz,  $^2J = 2.2$  Hz); 25.75 (tt, (CH<sub>2</sub>)<sub>2</sub>,  $^1J = 132.2$  Hz,  $^2J = 3.6$  Hz); 28.74 (q.sept.,  $\underline{\text{Me}}_3$ C,  $^1J = 125.0$  Hz,  $^3J = 4.4$  Hz); 43.93 (t, CH<sub>2</sub>N,  $^1J = 138.1$  Hz); 49.85 (br.s, C(CO<sub>2</sub>Et)<sub>2</sub>); 58.22 (s, CMe<sub>3</sub>); 60.9 (tq, CH<sub>2</sub>O,  $^1J = 148.2$  Hz,  $^2J = 4.4$  Hz); 170.83 (br.s, CO). Yield of the picrate 60 %, m.p. 177-178 °C. Found (%): N,  $11.21.C_{38}H_{54}O_{22}N_8$ . Calculated (%): N, 11.49.